

TD5: Polynômes.

Exercice 1 Déterminer la division euclidienne de A par B.

1.
$$A = X^3 + X^2 + X + 1$$
 et $B = X + 1$

2.
$$A = X^4 + 5X^3 + 12X^2 + 19X - 7$$
 et $B = X^2 - 3X + 1$

3.
$$A = X^5 - X^2 + 2$$
 et $B = 1 + X^2$

4.
$$A = X^4 + 4X^3 + 3X^2 - 4X - 4$$
 et $B = (X + 2)^2$

5.
$$A = X^n - 1$$
 et $B = X - 1$ Indication : Récurrence sur $n \in \mathbb{N}^*$.

Exercice 2

1. Soit
$$P = X^3 - 1 \in \mathbb{R}[X]$$
.

- (a) Montrer que 1 est racine de P.
- (b) En déduire la factorisation en produit d'irréductibles de P sur \mathbb{R} .
- 2. Factoriser en produit d'irréductibles sur $\mathbb R$ les polynômes suivants :

(a)
$$Q = X^3 - X^2 + 2X - 2$$

(b)
$$R = X^3 + X^2 - 4X - 4$$

(c)
$$S = X^4 - 5X^3 + 8X^2 - 5X + 1$$

(d)
$$T = X^4 - 10X^2 + 25$$

Exercice 3 Les questions sont indépendantes.

- 1. Déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 2. Démontrer que $nX^{n+1} (n+1)X^n + 1$ est divisible par $(X-1)^2$.

Exercice 4 Effectuer la division selon les puissances croissantes de A par B.

1.
$$A = 1 + X$$
 et $B = 1 - X$ à l'ordre $p = 2$

2.
$$A = 2 + X^2$$
 et $B = 1 - X + 3X^2$ à l'ordre $p = 3$

3.
$$A = X^2 + 3X^3 + X^4 + X^5$$
 et $B = 1 + X$ à l'ordre $p = 4$.

Exercice 5 Les questions sont indépendantes.

- 1. On considère le polynôme $P = 2X^3 3X^2 + 1$.
 - (a) Montrer que P admet une racine double.
 - (b) En déduire la factorisation en produit d'irréductibles de P sur \mathbb{R} .
- 2. Soient a et b deux réels.
 - (a) Déterminer tous les polynômes $P=3X^5-10X^3+aX+b$ ayant une racine de multiplicité 3.
 - (b) Factoriser chacun des polynômes trouvés.

Exercice 6 Factoriser sur \mathbb{C} le polynôme $P = X^3 - 3iX^2 + (2i - 3)X + 2 + i$.